
CO 
00 

o 
DO M: 

A"  *■— -f^, C    .—      »    |tv r 
5  T? TffS PAGE 

Carnegie Institute of Technology 
PiHiburgfi IJ, t<tniMf\man<a 

I 

"ÜOPF  
HARD COW 

MICROFICHE 

OF 

$. 

$. 

GRADUATE SCHOOL 0/ INDUSTRIAL ADMINISTRATION 
Wif/iam larimcr M*/lon, foundtr 



_CCi>L   /.. Gf ■■+■■ 
HARD COPV      $. - 
MICROFICHE      $. 

•   1 

O.N.R.  Research Memorendum No.  123 

OPTIMAL DETECTION OF AN UNKNOWN 
DISCRETE WAVEFORM WHICH IS 
RECURRING  IN GAUSSIAN  NOISE 

by 

M.  J. Hinlch 

June, 196U 

Graduate School of Industrial Administration 

Carnegie Institute of Technology 

Pittsburgh, Pennsylvania 15213 

Thi3  paper was written as  part of the contract  "PlanninK and Control of 
Industrial Operations," with the Office  of Naval Research at the Graduate 
School of Industrial  Administration, Carnegie  Institute of Technology, 
Management Sciences Resesrch Group.    Reproduction of  this paper  in whole 
or  in part  is permitted for any purpose  of the  United States Government. 
Contract Nonr  ?? T02U. 



I.      Sumnary and Introduction 

Inbedded in additive Gaussian noise, an unknown acoustic signal 

0(t)  is recurring over and over again.    The  signal consists of a 

specified number of amplitude modulated pulses of width T see's.    That 

is,    0(t) -      Z    öi P[t-(i-l)T]    where    n    is known and P(t.)  -|Q otherSise^ T 

We do not know these amplitudes    0., but suppose Z 0. and the average rate 

of recurrence are known.    Assume that the recurrence times for the signal 

are purely random.    We wish to determine these recurrence times, i,e. , 

to detect when the signal appears in the noise. 

Let X(t) denote  the signal plus noise process.    We sample X(t) by 

taking non-overlapping discrete-time records, each being wT sec'8  in 

duration.    To be more exact, each record consists of w successive 

observations on X(t) where the observations are taken T see's apart. 

The optimal method for determining whether or not 0(t) is present 

in a given record is given by the likelihood-ratio test   (Mood [h], 

Wainstein and Zubakov [5]).    If the signal-to-noise ratio is  low, then 

the  likelihood-ratio test amounts to observing whether the sum of all 

the observations in the record exceeds in absolute value a  fixed 
n       r threshold, provided that      Z   0.   -/©(tydt is non-zero.    However 

i-1 J 

results are  given for the  case where    Z W    "0. 

The detection problem is closely connected with the estimation of 

0(t) and its autocorrelation ^ (t)  -JQ{Ut) e(t)dt.    Hinich  [2) 

discusses this connection and using the  tools  of large-sample  theory, 

shows that the optimal estimator of y   *-8 a linear combination of the 

sample autocorrelation and the square  of the  sample average of the record 

again given low signal-to-noise ratio.    However  the estimation of 0 

is more  involved. 
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Although  thia work should be of some use  in the problem of active 

and passive  sonar detection of submarines,   the  initial motivation was 

from an investigation   into an underwater communicfltion system based 

upon acoustic pulse  position modulation, AFM.    To illustrate this system 

suppose submarine A  is sending a message to submarine B by APM.    Sub A 

repeats an acoustic  signal ü(t) as defined above.    The  intervals between 

the repetitions of    w(t)  contain the information which A is sending. 

The message is coded so that these intervals seem to be purely random in 

length.    However, the  average time between recurrences of the signal is 

at least an order of magnitude longer than  the  duration of the signal, 

nT see's. 

Sub B knows  n,T, and the pseudo-random code for the  intervals 

between recurrences.     If Sub B knows the 0. ,   it could detect the times 

of occurrence by matched  filtering (Wainstein and Zubakov [5]). 

Unfortunately the medium often distorts and delays the  pulses, and thus 

Sub B then doesn't know the shape of the transmitted signal. 

To concluue,  let us outline this paper.     In Section II we give a 

formal statement of  the problem poaed above.     In Section III we  present 

(as a Bayes strategy)   the  likelihood-ratio test  for the detection of 

the recurrence of the wavefcrm.     In  Section  IV  we give an approxira^te 

likelihood-ratio test for  the detection of the waveform when £ 0.   - 0. 
i 

Numerical examples are  given for both  the  case where Z Ö.   / 0 and when 

it is zero. 

11.     Statement of  Problem 

We shall develop a  formal statement of  the problem.     First let us 

disruss  it informally. 



We observe n  process X(t) which consists of 8 randomly occurring 

unknown signal  plus noise.    The noise process N{t)   is assumed to be 

stationary and Gaur^ian with mean zero and  known covariance.    Without 

loss of teneiality we nay normalize  so that the noise  has  variance 

0 0 -a 
OL/.x   - EN (t)  -  1.     Otherwise define X (t)  - Xlt)/^,.^. 

The waveform 0(t)  has known length and can be represented as a 

step function as   is   illustrated in Figure  1  for n - 2. 

The parameter T is the pulse width and n is  the number of pulses. 

Thus nT is  the duration of the  signal.     The  vector of pulse amplitudes 

9'   «  (9, ,...,0  )   is unknown, but assume we know 0.   ■» 0    ♦   •••   •» Ö . 
1'       '  n 1        ? n 

We assume that the time  intervals  between repetitions are large 

compared to the  length of  the waveform.     Let   ^    be   the rate of repetitions 

of   0(t).     Then  ^ ' T seconds is the average time between waveforms, 

and thus,   Q     is small. 1 
n      ?  ? 

We assume  that      |l Q ll    ■  (  Z Ö.) is small compared to the 
i-1    1 

variance of the  noise, we can state this   in terms of    R ,  the  signal-to- 
n   2  Z"00 

noise ratio of X(t). By definition RQ ■ j' ^  0./ /   S (f) df 
w j.l       1   "■'-aD        N 

where S-,(f)   is the  spectral density of the noise, N(t).     But 
N 

/C)   S  (f)  df  -    EN  (t)  ■ ov,.x   - 1 by the normalization of N.    Thus, 
^ -UD        n      2 2 
Rc • J    I    0.   - ^  II 9 ||   .    Sine*- J and   II 9 ll    are small,  R    is low. 

1«1 



Now we will discuss the sampling procedure. For fixed Integer w, 

we will take a finite group of w successive discrete observations on 

X(t); the successive observations being T second apart.  That is for 

each t.  such that t, < t < '•• < t , we observe 
i 1   2        m' 

X(t. ♦ T), X(ti ♦ ?T), ..., X(ti ♦ wT). 

The intervals  between the    t   's    (t.i4l   - t.) are all substantially 

greater than    wT    and    nT (the duration of the waveform).     Let 

X^l)  - (X(ti ♦ T),  ..., X(ti ♦ wT))    1-1,  ..., m. 

We thus have a sample of    m    vector observations on a w-dimensional 

random variable. 

This sampling tcheme may be regarded as opening a sequence of 

windows of width    wT    seconds,  through which we observe  the  process at 

m   different stages  of time. 

There are several different possibilities which can occur when a 

window is opened.    There may be no part of the waveform present during 

the    wT    second  "look" at X(t).     In that case we  observe  only noise. 

However, the window may open Just as  the   front part of the waveform is 

"visible".     In that case only the head of the vector    Ö    plus  noise is 

observed.     Similarly, we might observe  only the  tail  of    0    plus noise, 

or perhaps the middle of    0    plus noise.     Incidentally let us  suppose 

that    wT « ^ ~    T    since we wish to exclude the possibility of catching 

two successive waveforms in the window. 

Since the window has w components and 9 has n components, 

there are n*w-l ways of catching part of Q along with the noise. 

We can represent these    n+w-l    possibilities  for    0    in the window by 
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defining 

dl {si9)' • (V »j«' 

where    0,    -0    if    k < 0    or k >    n*l.    For example (S      0)'  - (8 0,   ...,0) 
k - - n-1 n 

and (S    4 0)'  ■ (0, 0, ..., 0,).    There is no way of knowing in advance 

which  case is occurring,    ivich of the    n*w-l    possibilities may be regarded 

as equally likely.    Figure 2 gives an example for    vfB3»  n«2 where the 

noise has  been removed. 

\ 

\ 

0. 
t  ♦! 

»2 !
A     l5*T 

i 
I I   1   I  I 

e. 

^^ 

l_U L1LJ   LU    lim    LU 
M~) (?) (3) U) m 

Figure 2.    ExAmple of 5ajnpling System with Noise Kemoved and n«2, w"3» 

t H 
'.Ve vd.ll catch some part of    6    i.i the i      window if and only if 

ö(t)  comrr.ences at time t  :   -nT  ♦t.   ■fT<t    < t.  ♦ wT.    Thus,  the probabil- o i o        i 

ity of this event is approximately     (n+w-l)  ^f where   %   is the recurrence 

rate.    The probability for observing a specific one of the    n*-w-l possibil- 

ities  is   simply ft . 

Since the distances between windows are greater than nT,  a single 

waveform cannot appear in two successive windows.    Moreover,  suppose that 

for some T  ,   EN(t*T)N(t)  = 0 forT >T    .    Then if we take the window» o o 

further apart than ^    seconds,   the    X    ''s are  independent.    The above 

restraint on the covariance of the noise holds approximately for many 

colored  noise  procecres which occur in applications.    Of course,  for white 
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noise, "T*    - Ü. 
*■ o 

We then can sum up this discuaaion with a formal statiatical state- 

ment of an idealized version of the problem: 

We have    m    independent  w-dimensional random vectors    X      , 

X      ,,.,,X       ,   each identically distributed as    X    where 

N * S        0 with probability   ^ 

N *  S-w+2
0    " 

(2) X  - 
N ♦  S       O 

n-«c 

n-1 

\     N « «        l-(n*w-l)3r 
s 

and So is defined in (1). 

The vector random variable N has a w-dimensional multivariate normal 

distribution with mean zero and known, non-singular covariance matrix E. 

We express this by y^ (N) = 77(0,1) where ^'{N} is the distribution function 

of the random variable N, 

n 
Suppose that I Q.   is either zero or it is a known constant of an order 

1    1 

of magnitude greater than jjöjj * E Ö.. Assuming that % and j| W J| are 

small we desire to test for each record X which of the two following 

hypotheses are true: 

(3) H   :    X(i)  - N(i) 

o 

H   :    X(l^  - r1^  ♦ SO for some J = -vr*l,...,  n-1. 

In other words,  we wish to determine which records  contain part of the wave- 

form along with noise. 
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111. Statistical Detection of Waveform for Y  - T.O.  / 0 

In tnis section we will derive the optimal (Bayea) test of the two 

hypothesis formulated in Section II, 

Suppose we have a random variable X from a population with density 

function f(x | (il). Suppose we wish to test H : (jl - (J) against H.: (f ■ <n 

where (t and d>, are completely specified. Let h and h, denote the 

a-priori probabilities for (|>  and (|),, respectively, i.e. 

P(d) true} «= h lTo    '   o 
U) 

Pj^ true} - h1 - l-ho 

Let L denote the loss incurred in rejecting H w^en in fact (D ■ (f , 

i.e. the false alarm cost. Let L,. be the loss in accepting i' when 
i o 

(| = (j)., i,e, the cost in missing the signal. The Bayes strategy is a 

function of the observed random variable which chooses either H or H. in o 1 

such a way as to minimize the expected loss.    In Chapter 12, Mood [U] 

shows  that the Bayes strategy is to reject H    (accept H,:  i|> ■ (JL)    ^ 

f(x|(M h L 

'  'O 11 

The random variable   X    and the parameter   §    can be vectors.    We call 

\(x )  the liklihood-ratio. 

We will now deal with the densities of interest in this work.    However, 

to facilitate the algebra we make the one-to-one transformation, 

(6) Z = E"1 X 

where iT    is the inverse of E,  the covariance matrix of the Gaussian noise 

vector N, 
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From (2) we have 

,-1 
/  N* ♦ l~    SO with probability for each 

J   -    -W^l,...,!!-! 

(7) 

N* with  probability 2(1-(n*w-;) 

where ^'{N*}  - ?t (0,   l"1). 

If the noise N(t)  is white,  then EN(t  )  N(t  ) - 0 for t,  / t?. 

2 
Thus  L is the  identity matrix since we made  o  /   v   ■ 1,     Thus    Z - X# 

To restate the hypotheses    H    and H,   in terms of Z,   from  (3) ve have 

H  : Z - N* with a-priori h    - l-{n**-l)X 
o o u 

(8) , 
H,:  Z - N*  ♦ I      SO for some J 

Thus H says that only noise is present in the window and H, says that 

some translation of 0 is present. 

Let f(z I 0) be the density of Z given H., parameterized by the 

waveform vector 0. Therefore from (7) we have 

(9) f(z(ö) = -^j- nL     n(7,|r1s«, r1) 
j=-w*l 

where 
-1-2     -i (z-cp)'C-1(z-(p) 

n(z|(p,C)  =  (2Tr)    ^   |C|   ^ e      ^ 

is a w-di-Tiensional normil density with mean (p and covariance matrix C, 

The density of Z  Riven H    is  simply 

f(z | 0)  = n(z | O.j:"1) 

Notice that  f(z    0) is a  convex  combination of multivariate normal 

densities,   but   it  is  not  in general multivariate normal  itself.    We shall 

handle  it by making Taylor series approximations with 0 in  the neighbor- 

hood of zero. 
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Dy expanding, in Taylor series nbout 9 ■ 0 we have 

n(z| r-y. kh— . i^ . iCp.(Z2. . r1)^ 
n(z| Ü, rL) 

♦   E   «3(2 I i,J,k)c3(i,J,k)(}.1(pJ9k 

i».11 * " -L 

• l|q'|l''K,<j'<P) 
where the c's are constants and 

K*(z, (p ) «^ d e 
t* z, 
x I 1 W w 

for some    t* > 0 and d > 0.     Thus  E [K*(Z,(7)  )]r exists  and is bounded 

by some number independent of (p for each r > 0,     With  the notation 

(11) 

y'1 MoiJ) 

n    f       •     -   r   \ ij il« Jk G3(z  I,J,K)   -  z.z4zk-o  Jzk-o    Z.-o" zi 

KoG  (z  i,J,k)  = 0     for all i,J,k 

From  pa/^e  39 of Anderson   [1], 

L- v „ v v ij k Ar        ik j/ i / Jk 
L Z.Z.Z, Zö     =  0  Jo ♦  o    oJ       ♦  o       oJ 

o :i   j k A 

o  i  J 

Moreover all odd moments  of the Z.'s are zero.    We then have the following 

orthogonality  relationships: 

E Z.(Z,Z. -o^)  -  Ü 
o  1    J k 

KoZ.f}3(Z J,k, a - 0 

Eü(Z.Z -olJ)G3(Z 1 k,A ,m)  -- 0        for all     i,^k,^ ,m. 

for all    i,j,k 

for all    i,J,k,i. 
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}>utlinf;(p= iJ.Q in  (10) and  summing,  we have from  ($) and  (8) that 

the  likJihood  ratio \(z | 0)  -     ffTTT)      is» 

(12) r(z 

L      G  (z|i,j,k)0(||e||3) 

-    K(z,0) ü(|l0||4)]. 

E [K(z,0)]  exists and is bounded by some number independent of Ü 
o 

for each  r > 0.    Moreover the 0( ||ö||   ) and 0( (| 0 ||   )  terms are 

functions  of 6 v/hich do not  involve z. 

Now define  the discrete autocorrelation vector V ' =   Cp,,..., ^ ) 

and the time-averare f/    by: 
' o 

V^l^l^-^nH   |IÖI|2 

V2 = eig2  ^Ö2Ö3  *"*  VA 

Y3  ^1Ö3  *  ^A  n-->ön-2ön 
(13) 

Vn'^ i n 

n 
(U) y    -       5;    «.   (DC  value of 0). 

1=1 

Applying   (1),   (13),   and   (1^)  wo  have 

w 

n-I 
} 

-w*l 
(15) r    s.« -v)   i 

where  1'   =    1,...,JJ,   and  for any   bynjaetric w x w matrix A  ■   (a, .) w lj 
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(16) 5      n^       (s ©)• A(S.ö) - (     i   a.jU M   WJ:   ^M.^YP 
'     J=-wl        J J 1=1    11      i i-1    1 ^ J- 

•      •      • 
w-n*l 

•   <       *     al'i.n-l)Vn' 
i-1 

where a. .  is  understood to be zero when  i or J  is  greater than w or 

less  than  1.     Tfius,   if w < n,   the coefficients of ^   flf..., 'W 

vanish and 

Applying   (15) and  (16)  to   (1?)  we have the following result. 

Lemma  1.    Define YU)'   =   (Y1(z),...,Y  (z))    by 

w-k*l 
(17) (z) =   i    ^izi*k-r0'   ~ ^ k=i»«"»n' 

i-l 

Then the liklihoud-ratio 

(18) ^ I«)= T&fff = 1 * -^r ^Z,VV0 * ^)"V 
r.     G (z|i,j,k)o(||üi3) > k(z,o)ü(||o \\u) 

It is understood that z,-  0 if i < 0 or i > w*l,   and thus if w < n 

Y    Jz)  =  ...   = Y  (z) -- Ü. 
w+1 n 

Suppose we know the waveform vector Ö.  Then from (5) and (8) in 

Section II, the Hayes test between H  (only noise) and H. (some part of 

the waveform present) is: 

keject H if \(z| 0) > k. 
o      ' 

tiowever suppose we  know onlyl^    =  EO.   but we use  an alternative  test 

which  says  re Vet H     if 
J    —     o 
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(l9a ) A*(zjQ) = 1 + -n-.~!~-~1- (z'l )'l.P, > k. 
w 0 

A* is the linear 

appr oximation of A. From Hinich [2], we have 

E Z' l = (1 1 Q w w E- l 1 ) 
w 

Var Z' l = 1 ' c 11 + Q w w w 

Thus we can r ewrite (19a ) to say r eject 

(l9b) (1 ' E- l 1 ) - l / 2 Z' 1 > 
w w w 

/lj)o 
n+w-1 

1 
n+w-1 

H if 
0 

n+w-1 

'if o 

o < IIQII 2
) . 

(k- 1) . 

Under H , Y = (1 ' E- 1 ) - l/2 Z' 1 i s a normal random variable 
0 w w w 

with mean zero and va ria.nce one . Under H1, Y is again normal with 

vari ance one but with mean 

(20) ( 1 ' i 1 1 ) 1/ 2 .. ljl 0 
w w n+w- 1 • 

Let a and a* be t he pr obabilit ies for r e jecting H when in fact 
0 

it i s true (f alse-alarm ) for t he A and A* - tests r espectively . Let 

~ and * be the robabilities of accepting h
0 

when H1 ie true, i . e . 

t he pro ab· it"es of m·ssi g t he wavef orm. Then t he expected l oss 

E( L) us ing A s , 

(2la ) E(L) = aL
0 

+ ~Ll 

whe re i s t he f s e- ala rm cos t and ~ is the cost of missing Q. 
0 

imilar ly the ex ected l oss E(L•) using A* is , 

(2lb) 

Since t he A - test is Bayes , E(L) < E(L•) . But in the Appendix we prove 

Theor em 

(22) 

The A• - t es t (l9b) between H
0 

and H1 has expected loss 

2 
n 

2 (v;+n- 1 ) 
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where D is the n ^  n m.itrix 

(23) D - K y(z) Y(Z)'. 

. • >~J uppose  the noise  is  white.     Thue 

UU) 

Y. =   1    and X = Z 
w 

Then from  (17) we hr\v>i th<-' autocorrelations, 

Y1   (X)  =   (X^ - Ij  *..,*   Ul - 1) 

Y„   (X)  = X-X.  ♦...♦ X    ,  X 
?        ' 12 w-1    w 

Y (x) = x^x   ♦...♦x      . x 
n In w-n*l    w 

^uprose 

• •  • W 
1 n      n 

Thus  from  (13) and   {1U) 

(25) 

n 

yo-l 

Set w = m. Thus  fron   (23) and   (2A) 

2n 
n-1 

Ü 

n-^ 

(26) D ü 

Thus from (2C>) and (26) 

Now let L = 1 and L, = 3.  This means that a miss is three times 
o 1 

as  costly as a false-alarm.    This  ia  realistic  If there is a-priorl 

knowledge of  the  pattern of repetitions  of 0,  allowing us  to  reduce the 
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false-alarm r a te. 

Moreover, a s ume tha t 1/a • 5n, i .e. the average distance between 

occurences of Q is five t imes as l ong as Q. Then the probability of noise 

a l one in the window is ~· Thus we have 

(27) 

(28a ) 

(28b ) 

(29) 

k = 1-na 
na 

Now l et n • w = 9. From (l 9b) we reject H if 
0 

k-1 
"flo 

- 1.89. 

l 3 I Under H , Y • - I: Xi has density n(y O, 1 ) • 
0 3 l 

a* = P {Y > l .891H } • . 029 r o 

Under H1, Y has density n(yjd, l ) where 

d = ~ 1 ·1il = . 18 from (20). Thus 
n w- ro 

13* • P r {Y < 1.891 H1} • .956 

From (2lb) 

E{L* ) • 2. 89 

From (22 ) and since ·~ •o'lf):. t• 
2. 65 < E(L) 2.89 

Fr om (28b ) we see t ha t the probability of a mis s is very high. 

This is because t he det ectability--d is small. But t his is the best we 

can do given t his sampli ng s cheme . The signal-to-noise r a t i o is small. 

I f we used matched- f ' l t er ing with Q as the f i lter funct i on, we could 

not do et.ter. 
1 w 

The tes t s t a t is t i c ~ f Zi is easy to compute. If we know 
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1f1 
0

, we can easily carry out the A.* - test. For small signal-to-noise 

ratio it is optimal. It should still be reasonably good even if the 

signal-to-noise ratio is not too small, especially if we include the second 

order tenns, which involve the wavefonn autocorrelation tenns, ·1f} i' and 

the autocorrelations Y. (Z). 
1 



-16-

IV. Det ection of vavefonn with 11. ., 0 . 
0 

If ·~ 
0 

= 0 , t he A*- t es t is no good. But suppose we know the discrete 

autocorrelation vec tor'V. Furthermo re, assume the noise is white. Thus 

E • I and Z = X. To test between H
0 

and H
1

, let us use the alternative test 

which says r eject H if 
0 

(30a) A** (z lo) = l + --=1~
n•w-l 

' Y(X)1J}> k, 

where t he vec t or Y(X) is iven by (24) and E YY' = D. 
0 

order approximation of the likelihood-ratio A. 

A** is t he second-

From Cochran ' s theorem and the central limit theorem (Lindgren [3) ) , 

un Pr H 
0 

(31) = (-~ I D"lf) - l/2 ~ y (X) ·1fl 
j =l j j 

has a normal dist r ibution with mean zero and variance one as w- t:IJ. 

Thus we an r ewr ite (30a) t o say reject H if 
0 

(30b) Q > (k- 1) (n+w-1) ( 1f 1 

D"lf')-1/
2 

Under H
1 

is a ain approximately normal with variance one, for large w, 

but with mean 

(32) l 
n+w-1 

since f r om Hinich [2 ] , 

E Y(X) = 1 
n+w-1 D 

D + --=l~
n•.,l- 1 

We t hus can prove in a manner similar t o that used for Theorem l, 

Theorem 2 : For small 0 , the A** - test (30b) 

has the property t hat 
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where a** is the false-alarm probability for the k**  - test and ß** is 

the probability of a miss.  In thi? case we do not specify the error terms. 

However, by analogy to Theorem 1, .'.he \** — test should be nearly optimal 

for reasonable larp.e n, 

Kx/unpie 2: For w > n, from (23) and (2^) 

(33) 

;jw 
w-l      o 

0 

*w-n*l 

Let w = 8 and n = U  with 

Ö' = | (1, -1, -1, 1) 

from (13) and (U) 

^jo  - Ü and^' " I  (2, -1, -2, 1). 

Thus from (33) 

y   Dv = 15—• 

Let k - 1 = -r as in Example 1,  From (3üb) and (31) we reject H if 

Q > l,U7  where, 

OM u-^Uzal-D-t %i xi,1.2ih x.>2 ♦ 1 x1 X^j ]. 

Under H   ,  Q has density n(q | 0,   1), 

(35a) a** = F    {Q > 1,U7 I H } - .071 r '    o 

Under IL,  W has  density n(q |d,   1)  where 

d  =  k—  (V   D^)  1/2 =  .23 from   (32).     Thus n^w-i 

(35b) ^ = Fr(Q < 1J47 H1} = .893 

Thus   frof.'. Theorem 2, 

K(L*') = 2.75 
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To conclude, we see from (Jl) and again in the example with (34) that 

the test statistic is simply a cross correlation between the sample discrete 

autocorrelation vector Y(X) and the discrete autocorrelation vector ~ • This 

cross correlation is fairly easy to co pute provided we know the·V/ .• Hinich 
1 

[2) gives the optimal estimators of the~., based upon Y(Z) and Z'l • 
1 w 

In addition we ass umed white noise for this section. The case of a 

general covariance matrix E is not a difficult extension, it just complicates 

the algebra. 



Appendix 

Proof of Theorem 1: From (18) 

a - Pr {K > k(Ho} > Pr {X*>k+i,[x  -^l<^|H0} 

- Pr {^ > k  4|Ho} - Pr (K* > k 4,|. - ^|> ^Hj 

(Al) >P    {(!'  I'1  1  ) ~1/'2 E Z. > k'lH  }  - P  {|\ - \*|>-|H } v  '' -   r l   w w7 j    i -     '  o'        rll I- nl oJ 

where, 

. , n»w-l    ..i -1  /.   ,^  lv 
k IT TTT  ^       (k~1    n^ 

(1'  I l 1 )l/?      Y o n 

w w 

Now a* - P {\* > k|H  } 
r ' o' 

- P/(1'   L'1 1  ) ~1/2 E Z. > k"   H  \ \    w w7 .    i -        I o^ 

where k" - n»w-l ^W "1  (k-1). 
 n UT     T 0 

w w7 

-1 -1/2    W 

Since (1'  E      1  )      '       I Z.  under H    is normal with mean zero and w w7 .    i o 

variance one,  and n is large, 

(A?) Pr {(i; r1  lw) -1/2 E Zi > k'} - a** o  ( ^ ). 

Moreover by the Tchebysheff inequality.  Mood [U], 

2 
pr{ I x - X^ 5 lHo) S —IL—5 tfDY* o ( || a ||6)] 

(w*n-l) 

since E    (\ - \*)  = 0 and from (18)^ 

Eo  (X - \*)2 i _    t-y, DY +  o(|| 0||6)  ] 
(w*n-l)" 

Thus  from (Al) and  (A2), 

(A3) a > a* - n2 [ ^ • D1|/* 0  ( |( 0 ||6)   ] ♦ o  ( - ) 

(w*n-l) 

Similarly for ß = P    {\ < klHj 
r '1 



2 6 1 
(AO   ß > ß* - —D—5— [f' uy ♦ 0 ( ||e l| ) ] ^ o ( - ) 

(w^n-l)^ 

Since from (21b),  E(L*)  - a*Lo  ♦ ß*^, 

we have  the desired result. 
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